NC STATE UNIVERSITY

CSC 405
Assembly

Aleksandr Nahapetyan
anahape@ncsu.edu

(Slides adapted from Dr. Kapravelos)

mailto:anahape@ncsu.edu

NC STATE UNIVERSITY

The von Neumann Architecture

Serves as the blueprint to almost all modern computers

Input

Memory CPU

(Wann unn) -— il —

NC STATE UNIVERSITY

The von Neumann Architecture

: : Memory
Memory holds two types of information:

Data Items ! DE’BB DBDJ

- variables, objects, etc.
- Read from or written to

Program Instructions

- machine code
- Code, but converted into 'binary words'

Both are stored in memory as binary numbers in a continuous array of fixed
width (also known as words) and have a unique address

Compiling Programs

Let's take a look at a simple C program

<stdio.h>

int main() {

int num = 42;

num += 31;

e
<

Compiling Programs

We can compile C programs using gcc to generate a binary executable

<stdio.h>

int main() {

int num = 42;

gcc simple.c -o simple

Using gcc, compile simple.c

and output its binary as simple

Compiling Programs

We can compile C programs using gcc to generate a binary executable

<stdio.h>

int main() {

int num = 42;

000601000 @F 1E FA 48 83 EC ©8 48 8B @5 D9 2F 0@ ©o 48 6..GH.1.H..0/..H

oeeelele Ce 74 02 FF De 48 83 C4 68 (C3 00 o0 oo eo oo LAt yPH.ALAL
660601020 FF 35 A2 2F ©@e ©0 F2 FF 25 A3 2F 0@ ©oe OF 1F oee V58 OYBES isainas
666010630 F3 ©eF 1E FA F2 FF 25 BD 2F ©0 e OF 1F 44 oo oe 6..u00y%%/....D..

00001040 F3 OF 1E FA 31 ED 49 89 D1 SE 48 89 E2 48 83 E4 6..G1iI.f"H.4H.3
00001050 F@ 50 54 45 31 CO 31 C9 48 8D 3D CA @0 00 @0 FF JSPTE1A1EH.=E...y
00001060 15 73 2F 00 00 F4 66 2E OF 1F 84 00 00 00 00 00 .s/..06f.........
00001070 48 8D 3D 99 2F @0 00 48 8D ©5 92 2F @@ 80 48 39 H.=./..H.../..H9
. . 00001080 F8 74 15 48 8B 05 56 2F 00 00 48 85 CO 74 @9 FF @t.H..V/..H.At.y
gCC Slmple. CcC -0 Slmple 00001090 EO OF 1F 8@ 60 60 00 60 C3 OF 1F 80 00 60 60 00 a....... Ao

000010A0 48 8D 3D 69 2F 80 00 48 8D 35 62 2F 00 00 48 29 H.=i/..H.5b/..H)
000010B0 FE 48 89 F@ 48 C1 EE 3F 48 C1 F8 ©3 48 01 C6 48 bH.3HAI?HA@.H.AH
000010C0 D1 FE 74 14 48 8B @05 25 2F 00 00 48 85 CO 74 08 Npt.H..%/..H.At.
6000106D0 FF EO 66 OF 1F 44 00 00 C3 OF 1F 80 00 00 00 00 yaf..D..A.......

60PO1GE@ F3 OF 1E FA 80 3D 25 2F 66 @@ 80 75 2B 55 48 83 6..0.=%/...u+UH
It W|" translate thlngS intO binary| 6@PO16FO 3D ©2 2F @6 00 60 48 89 E5 74 OC 48 8B 3D 66 2F =./...H.3t.H.=./
. eee01100 0O 80 ES 29 FF FF FF E8 64 FF FF FF C6 85 FD 2E L.2)yVVedyVVA.Y.
@eee1110 @@ 80 e1 5D C2 8F 1F 80 C3 eF 1F 86 ©6 60 66 ee PR [. e ——
0601120 F3 OF 1E FA EQ 77 FF FF FF F3 @F 1E FA 55 48 89 6..UG6uyyy6..GaUH
eeee113@ ES5 C7 45 FC 2A 60 @@ 80 83 45 FC 1F BS 80 €8 @@ A&CEu* LEQ.
eeee114e @@ 5D C3 @@ F3 OF 1E FA 48 83 EC @8 48 83 C4 @8 JA.6..GH.i.H.A

666011506 C3 00 00 ee 00 e 00 60 00 60 oe 06 ee ©o6 ee oo A

Compiling Programs

We can compile C programs using gcc to generate a binary executable

<stdio.h>

int main() {

int num

000601000 @F 1E FA 48 83 EC ©8 48 8B @5 D9 2F 0@ ©o 48 6..GH.1.H..0/..H

oeeelele Ce 74 02 FF De 48 83 C4 68 (C3 00 o0 oo eo oo LAt yPH.ALAL
660601020 FF 35 A2 2F ©@e ©0 F2 FF 25 A3 2F 0@ ©oe OF 1F oee V58 OYBES isainas
666010630 F3 ©eF 1E FA F2 FF 25 BD 2F ©0 e OF 1F 44 oo oe 6..u00y%%/....D..

00001040 F3 OF 1E FA 31 ED 49 89 D1 SE 48 89 E2 48 83 E4 6..G1iI.f"H.4H.3
00001050 F@ 50 54 45 31 CO 31 C9 48 8D 3D CA @0 00 @0 FF JSPTE1A1EH.=E...y
00001060 15 73 2F 00 00 F4 66 2E OF 1F 84 00 00 00 00 00 .s/..06f.........
00001070 48 8D 3D 99 2F @0 00 48 8D ©5 92 2F @@ 80 48 39 H.=./..H.../..H9
. . 00001080 F8 74 15 48 8B 05 56 2F 00 00 48 85 CO 74 @9 FF @t.H..V/..H.At.y
gCC Slmple. CcC -0 Slmple 00001090 EO OF 1F 8@ 60 60 00 60 C3 OF 1F 80 00 60 60 00 a....... Ao

000010A0 48 8D 3D 69 2F 80 00 48 8D 35 62 2F 00 00 48 29 H.=i/..H.5b/..H)
000010B0 FE 48 89 F@ 48 C1 EE 3F 48 C1 F8 ©3 48 01 C6 48 bH.3HAI?HA@.H.AH
000010C0 D1 FE 74 14 48 8B @05 25 2F 00 00 48 85 CO 74 08 Npt.H..%/..H.At.

66601606 FEF _EO 66 OF 1F 44 00 00 C3 OF 1F © 66 006 ©6e oe Val Do oo o nmmins
66606106ES 5 2B 55 48 83 6..0.=%/...u+UH.
. . . . Type Value :
600B0106F06 8 8B 3D @6 2F =.f...H.at.H.=./
It will translate things into binary! g h 42 |Fcees fooae lajyivedsivay.
eee01110 Y © 60 00 00 00 e Tl et soena vaana
66601120 F3: 6F 2E ‘FA E9 77 EE ‘FEE ‘EF: F3.9F AE FA 5548 89 6..06wyyyo..auH
666061130 E5 C7 45 FC|2A |66 006 ©0 83 45 FC 1F B8 ©0 006 00 aCEU* e B
666061140 806 5D C3 ©0 F3 OF 1E FA 48 83 EC ©8 48 83 (C4 o8]A.é GH.i.H.A

666011506 C3 00 00 ee 00 e 00 60 00 60 oe 06 ee ©o6 ee oo A

Compiling Programs

We can compile C programs using gcc to generate a binary executable

<stdio.h>

int main() {

int num

000601000 @F 1E FA 48 83 EC ©8 48 8B @5 D9 2F 0@ ©o 48 6..GH.1.H..0/..H

oeeelele Ce 74 02 FF De 48 83 C4 68 (C3 00 o0 oo eo oo LAt yPH.ALAL
660601020 FF 35 A2 2F ©@e ©0 F2 FF 25 A3 2F 0@ ©oe OF 1F oee V58 OYBES isainas
666010630 F3 ©eF 1E FA F2 FF 25 BD 2F ©0 e OF 1F 44 oo oe 6..u00y%%/....D..

00001040 F3 OF 1E FA 31 ED 49 89 D1 SE 48 89 E2 48 83 E4 6..G1iI.f"H.4H.3
00001050 F@ 50 54 45 31 CO 31 C9 48 8D 3D CA @0 00 @0 FF JSPTE1A1EH.=E...y
00001060 15 73 2F 00 00 F4 66 2E OF 1F 84 00 00 00 00 00 .s/..06f.........
00001070 48 8D 3D 99 2F @0 00 48 8D ©5 92 2F @@ 80 48 39 H.=./..H.../..H9
. . 00001080 F8 74 15 48 8B 05 56 2F 00 00 48 85 CO 74 @9 FF @t.H..V/..H.At.y
gCC Slmple. CcC -0 Slmple 00001090 EO OF 1F 8@ 60 60 00 60 C3 OF 1F 80 00 60 60 00 a....... Ao

000010A0 48 8D 3D 69 2F 80 00 48 8D 35 62 2F 00 00 48 29 H.=i/..H.5b/..H)
000010B0 FE 48 89 F@ 48 C1 EE 3F 48 C1 F8 ©3 48 01 C6 48 bH.3HAI?HA@.H.AH
000010C0 D1 FE 74 14 48 8B @05 25 2F 00 00 48 85 CO 74 08 Npt.H..%/..H.At.

66601606 EF _EO 66 OF 1F 44 00 00 C3 OF 1F © 66 006 ©6e oe Val Do oo o nmmins
66606106ES 'S 2B 55 48 83 6..0.=%/...u+UH.
. . . . Type Value :
0000106F0 I8 88 3D @6 2F =.f...H.at.H.=./
It will translate things into binary! s h 31 | o o5 Fo e I&3jsybasivy.
eee01110 y 0 80 80 80 00 e Tl et soena vaana
66601120 F3: 6F 2E ‘FA E9 77 EFE ‘EE EF: F3.9F AE FA 5548 89 6..06wyyyo..auH
666061130 E5 C7 45 FC 2A 060 ©0 ©0 83 45 FC|1F |[B8 00 ©06 o0 aCEU* e B
666061140 806 5D C3 ©0 F3 OF 1E FA 48 83 EC ©8 48 83 (C4 o8]A.é GH.i.H.A

666011506 C3 00 00 ee 00 e 00 60 00 60 oe 06 ee ©o6 ee oo A

Compiling Programs

We can compile C programs using gcc to generate a binary executable

<stdio.h>

int main() {

int num = 42;

gcc -nostdlib simple.c -o simple

eeeelece F30F 1EFA 5548 89E5 (C745 FC2A 60060 0683 G TUHACET® v :

We can also exclude the @eeR1010 45FC 1FB8 0GR 0GPO SDC3 666G GGG GO0 Elic spsvense o] B e
Standard Ilbrary Wlth -nostdlib to Same code, but only simple.c and nothing else
reduce "the code"

NC STATE UNIVERSITY

Tools to Become Familiar With

xxd/hexdump -C <filename> - Unix tool to viewing any binary file in hex
format

alexaMarcille > hexdump) I

00000000 25 34 0@a 25 |%PDF-1.4.%
00000010 33 0a 3c 3c [3.0.0bj.<<./Typel
00000020 0a 6f 67 0a | ./Catalog./Names|
00000030 0a 2f 50 61 | .<<.>>./Pagelabe]|
00000040 6C Le 75 6d [1s.<<./Nums.[.0.]|
00000050 3c 44 Qa 2f [Ic<WV/SH/)/ S 1w
00000060 3e 2f 4f 75 [>.].>>./0utlines|
00000070 0a 2f 50 61 |.2.0.R./Pages.1.
00000080 30 65 6e 64 |0.R.>>.endobj.4. |
00000090 30 3c 0Qa 2f |0.0bj.<<./Creato]
ralexaMarcille > hexdump

00000000 cf 01 00 00

00000010 11 00 85 00

00000020 19 00 5f 5f

00000030 52 00 00 00

00000040 00 00 00 00

00000050 00 00 00 00

00000060 00 00 19 00

00000070 5f 00 00 00

00000080 00 00 00 40

00000090 00 00 40

alexaMarcille

NC STATE UNIVERSITY

Try it yourself: find the password!

https://go.ncsu.edu/86udx45

Issues [

&) Ale0x78 Sample p

Name

[linux_86

[macos_arm

[macOS_x86

(=]

3 Projects [0 wiki Security |~/ Insights Settings

= e Add file ~

commit message ast commit date

Sample pr s for] 5 minutes

Sample pr

https://go.ncsu.edu/86udx45

NC STATE UNIVERSITY

The von Neumann Architecture

CPU
The CPU is in charge of executing the currently load program's i1

instructions

Executes three primary tasks: TITIIIL

- Arithmetic Logic Unit (ALU)

- Make some calculation

- Do some comparison
- Registers

- Read/Write values from/to memory

- Stores values on the CPU rather than pushing to memory for efficiency
- Control Unit

- Conditionally jump to execute other instructions

NC STATE UNIVERSITY

Memory is Slow

When the CPU retrieves contents from memory address i

« i travels from the CPU to RAM
 RAM's logic selects the memory register whose address is i
« contents of RAM[i] travels back to the CPU

Level Access Time Typical Size Technology Managed By
Registers 1-3 ns 1 KB CMOS Compiler

L1 Cache 2-8 ns 8KB - 128KB SRAM Hardware
L2 Cache 5-12 ns ©.5MB - 8MB SRAM Hardware
Main Memory 10-60 ns 64MB - 1GB DRAM 0OS

Hard Disk 9.3-1 ms 20GB - 100GB @ Magnetic OS / User

NC STATE UNIVERSITY

Registers

Registers provide the same service but without travel and search
expenses

This is because the reside inside the CPU and are much more
limited in supply (allowing for shorter instructions)

Serves three purposes:

« Data - stores values for short term calculations

« Addressing - stores memory addresses for various functions

* Program Counter - keeps track of the next instruction to be
fetched

NC STATE UNIVERSITY

Registers

Registers provide the same service but without travel and search
expenses

This is because the reside inside the CPU and are much more
limited in supply (allowing for shorter instructions)

Serves three purposes:
« Data - stores values for short term calculations
« Addressing - stores memory addresses for various functions
 Program Counter
fetched

As we'll see next week, this is how we can on to be
cause some damage

NC STATE UNIVERSITY

Registers

Register Conventional use Low 32-bits Low 16-bits Low 8-bits
%rax Return value, callee-owned %eax %ax %al
%srdi 1st argument, callee-owned %sedi %di %dil
%rsi 2nd argument, callee-owned %esi %si %sil
%rdx 3rd argument, callee-owned %sedx %dx %d 1
%rcx 4th argument, callee-owned %eCX %CX %scl
%r8 5th argument, callee-owned %r8d %r8w %rab
%r9 6th argument, callee-owned %rod %row %rob
%rlo Scratch/temporary, callee-owned %rled %rlow %r1ob
%rill Scratch/temporary, callee-owned %rlld %rllw %rllb
%rsp Stack pointer, caller-owned %esp %Sp %spl
%rbx Local variable, caller-owned %sebx %bx %bl
%rbp Local variable, caller-owned %ebp %bp %bpl
%ri2 Local variable, caller-owned %sri2d %ril2w %ri2b
%ril3 Local variable, caller-owned %ri3d %rl3w %ri3b
%rl4 Local variable, caller-owned %rilad %rlaw %rlab
%ril5 Local variable, caller-owned %ri15d %rlsw %ri5b
%rip Instruction pointer

%eflags Status/condition code bits

From the reading

https://web.stanford.edu/class/archive/cs/cs107/cs107.1194/guide/x86-64.html

NC STATE UNIVERSITY

What’s up with RAX, EAX, AX, AL?

0 RA —m8m—mm—m e}
0 EAX ———]

O— AX—{

63 31 1-5 7 0

From: The Accumulator reqister in x86—64 assembly: understanding RAX, EAX, AX, AH. and AL

https://medium.com/@pierre.ansar/the-accumulator-register-in-x86-64-assembly-understanding-rax-eax-ax-ah-and-al-0deb18032778

NC STATE UNIVERSITY

Machine Code

Machine code can be broken down into two categories: binary and symbolic

C7 45 FC 2A 00 00 00

86006106080 F30F 1EFA 5548 89ES [C745 FC2A 060060 0083 O MUH aGED® o -
eoeolele 45FC 1FB8 ©00606 0060606 5DC3 000606 ©0060 0000 ST SRR [¥ A

NC STATE UNIVERSITY

Machine Code

Machine code can be broken down into two categories: binary and symbolic

o a5 e om0 o0 oo [T

86006106080 F30F 1EFA 5548 89ES [C745 FC2A 060060 0083 O MUH aGED® o -
606061010 45FC 1FB8 ©0060 006060 5DC3 o060 60060 06000 ST SRR [¥ A

NC STATE UNIVERSITY

Machine Code Instead of
1100 0111 0100 0101 1111

]] . 1100 0010 1010 00O 0O
Machine code can be broken down into two categories 0000 0000 0000 0000,
we commonly condense it down to
hexadecimal for "easier reading"

C7 45 FC 2A 00 00 00

eeeoeleoe F30F 1EFA 5548 89ES [C745 FC2A 06000 0083 0. . UUH.aGCED®* .. -
eoo6elele 45FC 1FB8 ©0060 006060 5DC3 o060 60060 06000 ST SRR | . SR

Machine Code

Machine code can be broken down into two categories: binary and symbolic

C7 45 FC 2A 00 00 00

We can also use a symbolic
assembly language that converts

666610600 F30F 1EFA 5548 89ES»(C745 FC2A 0606866

these 1's and O's into something

066061061806 45FC 1FB8 0000 ©0060P 5DC3 000G ©B0BO | actually readable
1 main:
2 pushq %rbp
3 movq wrsp, %rbp
4 —»>-mov 1 $42, -4(%rbp)
5 addl $31, -4(%rbp)
6 mov1 $0, %eax
7 popq %rbp
8 ret

NC STATE UNIVERSITY

Assembly Flavors

There are several Assembly languages, each written for a
specific processor

In accordance with the processor's Instruction Set
Architecture, or ISA

Three Primary Architectures

e x86 — We will be working with this one!
« ARM
« MIPS

* plus many more...

NC STATE UNIVERSITY

x86 Syntax Branches - Intel and AT&T

Intel

* Windows and DOS programs

« Operations follow the format
mnemonic destination, source

e mov ebx, 42

AT&T

* Unix programs

» Operations follows the format
mnemonic source, destination

e mov $42, %ebx

NC STATE UNIVERSITY

Syntax Branches - Intel and AT&T

Intel

* Windows and DOS programs
« Operations follow the format
mnemonic destination, source

e mov ebx, 42 <& Move the
value 42 into
AT&T register ebx
« Unix programs

» Operations follows the format * Slight variations between the two
mnemonic source, destination
e mov $42, %ebx =

NC STATE UNIVERSITY

x86 Assembly Syntax - Reserved Keywords

e |ds

e les

o |fs

e lgs
eSS

* pop
e push
ein

e ins

e out
e outs
e |ahf
e sahf
« popf
e pushf
e CMC
e Clc

e stc

e Cli

e sti

e Cld
e std
e add
e adc
e Sub
e sbb
e CMP
s inc
e dec
o test
e sal
e shl
e Sar
e shr
¢ shid
« shrd
¢ not
* Neg

« bound o fwait
e and * MOVS
e Or e CMpS
e XOr e stos
e imul e |ods
e mul e scas
e div e xlat

e idiv o rep

e cbtw e repnz
e cwtl * repz
e cwid o [call
e Cltd e call

e daa o ret

e das o Iret

e 2aa e enter
e aas e leave
e aam e jOXZ
e aad « loop
e wait e loopnz

e loopz
* jmp
o jmp
e int

e into
e iret

o sldt
o Sir

o lidt

o tr

e verr
e VEIrwW
e sgdt
e Sidt
o |gdt
o lidt

* SMSW
o Imsw

e lar

o |s|

o Clts

e arpl

e bsf

e bsr

e bt

e bic

o bir

e bis

e cmpxchg
e fsin

« fcos

e fsincos
o fld

o fldcw

o fldenv
 fprem
o fucom
o fucomp

« fucompp
e lea

* MoV

« MoVW
e MOVSX
e movzb
® popa

¢ pusha
e rcl

e rcr

e 10l

e ror

e setcc
e bswap
e xadd

¢ xchg

« wbinvd
e invd

e invipg

e lock
e Nop
e hit

o fld

o fst

e fStp

e fxch
o fild

o fist

o fistp
o fbid

o fbstp
e fadd
« faddp
o fiadd
e fsub
o fsubp
o fsubr
e fsubrp

o fisubrp
o fisubr
o fmul

« fmulp
o fimul
o fdiv

o fdivp
o fdivr

o fdivrp
o fidiv

o fidivr
o foqrt

o fscale
o fprem
o frndint
o fxtract
« fabs

o fchs

o fcom

https://en.wikipedia.org/wiki/X86_instruction_listings

« fcomp
« fcompp
o ficom
« ficomp
o ftst

e fxam

o fptan

« fpatan
e f2xm1
o fyl2x

o fyl2xp1
« fldi2e
o fldi2t

« fldig2
o fldin2
o fldpi

o fldz

o finit

o fnint

= fnop

o fsave

e fnsave
o fstew

e fnstew
o fstenv
e fnstenv
o fstsw

e fnstsw
e frstor

o fclex

» fnclex
 fdecstp
« ffree

o fincstp

https://en.wikipedia.org/wiki/X86_instruction_listings

NC STATE UNIVERSITY

x86 Assembly Syntax - Reserved Keywords

e |ds o sti « bound o fwait e loopz o Is| e fucompp e lock o fisubrp « fcomp = fnop
o les e cld e and * MOVS e jmp o Clts e lea e NOp o fisubr « fcompp o fsave
o Ifs e std e Or ® CMps o jmp e arpl ® mov e hit o fmul o ficom e fnsave

You don't need to memorize them, but be
aware they all exist, have corresponding #
hexadecimal values, and some of them

will be needed for this class

e clC « shrd e aam e jOXZ * SMSW fprem « wbinvd o fsubp fabs o fldz

e sic e not e aad « loop o Imsw o fucom e invd o fsubr o fchs o finit
e cli * Neg e wait e loopnz o lar o fucomp e invipg e fsubrp o fcom o fnint

https://en.wikipedia.org/wiki/X86_instruction_listings

https://en.wikipedia.org/wiki/X86_instruction_listings

Executing Programs

When a program is executed, various elements of the program are
loaded into memory

Information from the program is then loaded from the address space in
memory

Three Segments:
. text - holds program instructions (read-only)

.bss - reserved for global variables, contains uninitialized data
.data - reserved for global variables, contains initialized data

Stack Machine Model

Arithmetic commands pop their operands from the top of the stack and push
their results back to the stack

Since stacks are LIFO (last in first out), a stack pointer (sp) tracks the location
just above the topmost element

previous
.......... RRRREEEEY values
previous : : previous on the stack
EETTPTRY SLRTTRRY : values values |
: revious ' ' : 1 '
p on the stack : R . onthe stack : &Y Previous value
values ArSp, 342, 9
-4(%rbp) of %rbp

%rbp

on the stack

Current value Previous value

of %rbp of %rbp

42 in memory
4 bytes below
the block above

NC STATE UNIVERSITY

Programs in Memory

T Lower Memory Addresses (0x08000000)
Shared Libraries
.text
.bss
Heap (grows |)
Stack (grows 1)
env pointer
argc
| Higher Memory Addresses (Oxbfffffff)

NC STATE UNIVERSITY

int main() {

Machine Code s
Let's break down the machine code of simple.c num += 31;
1wvmain:
pushg %rbp
mov(q %rsp, S%rbp

mov L $42, -4(%rbp)
addl $31, -4(%rbp)
mov L $0, %eax
popq %rbp

ret

0o O U B WN

NC STATE UNIVERSITY

int main() {

Machine Code et

Let's break down the machine code of simple.c num += 31;

1vmain:

2 "pushqg %rbp : ——

3 | movg _ _ %rsp, fsrbp | _ AW 7 e nction prologuet
4 mov 1 $42, -4(%rbp)

5 addl $31, -4(%rbp)

6 mov L $0, %eax

7 popq %rop
8 ret

NC STATE UNIVERSITY

Machine Code

Let's break down the machine code of simple.c

1vmain:

0o O U B WN

$31, —-4(%rbp)
$0, %eax
%rop

int main() {

int num = 42;

num += 31;

First, we push the base pointer

(%rbp) onto the stack for later

NC STATE UNIVERSITY

Machine Code

Let's break down the machine code of simple.c

1vmain:

0o O U B WN

_pushq__ %rbp

$31, —-4(%rbp)
$0, %eax
%rop

int main() {

int num = 42;

num += 31;

Next, we move (really copy) the

stack pointer (%rsp) to the base
pointer (%rbp)

NC STATE UNIVERSITY

Let's break down the machine code of simple.c

Machine Code

1vmain:

0o O U B WN

$31, —-4(%rbp)
$0, %eax
%rop

int main() {

int num = 42;

num += 31;

These two instructions establish
the stack frame of the program

NC STATE UNIVERSITY

Let's break down the machine code of simple.c

Machine Code

1vmain:

2 pushg %rbp

3 movq__ _%rsp,_%rbp__ __ __
4 ''movl $42, —4(%rbp) !
5 “addl $31, -4(%rbp)
6 mov L $0, %eax

7 popq %rop

8 ret

int main() {

int num = 42;

num += 31;

Next, we're storing the constant 42
($42) into a memory location

-4(%rbp) is pointing to a memory
address that is 4 bytes before %rbp

NC STATE UNIVERSITY

Machine Code

Let's break down the machine code of simple.c

1vmain:

0o O U B WN

pushq
movq

%rbp
%rsp, S%rbp

int main() {

int num = 42;

num += 31;

Next, add the constant 31 ($31) that

same memory address

NC STATE UNIVERSITY

Machine Code

Let's break down the machine code of simple.c

1vmain:

0o O U B WN

pushq
movq
mov L

%rbp

%rsp, S%rbp
$42, -4(%rbp)
$31, -4(%rbp)

int main() {

int num = 42;

num += 31;

C programs need to return a value,
so here we are copying the return

value () to a general purpose
register (%eax)

NC STATE UNIVERSITY

Machine Code

Let's break down the machine code of simple.c

1vmain:

0o O U B WN

pushq
movq
mov L

%rbp

%rsp, %rbp
$42, -4(%rbp)
$31, -4(%rbp)

int main() {

int num = 42;

num += 31;

General purpose register (%eax)

Register relative to stack (%rbp)

NC STATE UNIVERSITY

Machine Code

Let's break down the machine code of simple.c

1vmain:

pushq
movq
mov 1
addl

0o O U B WN

%rbp

%rsp, S%rbp
$42, -4(%rbp)
$31, -4(%rbp)

int main() {

int num = 42;

num += 31;

We pop the base pointer (%rbp)

off the stack to return it to its
original value

NC STATE UNIVERSITY

Machine Code

Let's break down the machine code of simple.c

1vmain:

0o O U B WN

pushq
movq
mov 1
addl
mov L

%rbp

%rsp, S%rbp
$42, -4(%rbp)
$31, -4(%rbp)
$0, %eax

int main() {

int num = 42;

num += 31;

Finally, we return from the function,

where the return value (0) is
expected to be stored in %eax

NC STATE UNIVERSITY

Let’s read some assembly

- push: pushes the values onto the
stack

- pop: pops the last value off of the
stack into the given register

What is RAX?

Let's emulate it

https://asm.diveintosystems.org/fullprog/x86_64/.text%0A.global%20main%0Amain%3A%0A%20%20push%20%241%0A%20%20push%20%242%0A%20%20push%20%243%0A%20%20push%20%244%0A%20%20pop%20%25rax%0A%20%20ret

NC STATE UNIVERSITY

Let’s read some assembly

- push: pushes the values onto the

stack
® - pop: pops the last value off of the
el e stack into the given register
.section - mov(q): copies the values from
src—dest. The (q) means 64-bit
main: values

Hleitls] Aoy Aasbly - sub: dest = dest - src

push $1

push $2 _

movq %rbp, %rax What is RAX?
movq %rsp, »rcx

sub %rcx, %rax

ret

NC STATE UNIVERSITY

Step-by-step

- Let’s step through it with ASM-Visualizer
- What if this was a 32-bit system?
- You can do this in GDB!

Breakpoint 2, in _start ()

(gdb) info registers

eax 0x8

ecx Oxffffab6f8

edx 0x0

ebx 0x0

esp oxffffabf8 Oxffffabf8
ebp oxffffa700 oxffffa700
esi 0x0 0

edi 0x0 0

eip 0x804900c 0x804900c <_start+12>
eflags 0x212 [AF IF]

GS 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

iiiS 0x0 0

gs 0x0 0

https://asm.diveintosystems.org/fullprog/x86_64/.global%20main%0A.section%20%20%20%20%20%20.text%20%0Amain%3A%0A%20%20movq%20%25rsp%2C%20%25rbp%0A%20%20push%20%241%0A%20%20push%20%242%0A%20%20movq%20%25rbp%2C%20%25rax%0A%20%20movq%20%25rsp%2C%20%25rcx%0A%20%20sub%20%20%20%20%25rcx%2C%20%25rax%0A%20%20ret

NC STATE UNIVERSITY

Breakpoint at

_start

Run until the
ret
instruction

- o e - - —

R
I_

Assemble the
file

> @
halexa > gdb
Reading symbols from o
(No debugging._symbols._faound.1n
(gdb) b _start
Breakpoint 1 at
(gdb) r
Starting program:
Breakpoint 1, in _start Q
(gdb) disassemble
Dump of assembler code for function
=> <+0>:

<>

<+4>:

HHOB

<+8>:

<+10>:

carill> g
End. of assembler. dump
(gdb) b *x0x0804900c

_start:

There is our
code!

’

-
|
- .
1

-t

1

o)
-
1
1

:—'—‘

1
1
[

Breakpoint 2 at
(gdb) c
Continuing.

Breakpoint 2, in _start
(gdb) info registers
eax 0x8
ecx oxffffaef8
edx 0x0
ebx 0x0
esp oxffffa6fs oxffffa6fs
ebp oxffffa700 oxffffaz700
i 0x0 0
0x0 0
0x804900c 0x804900c <_start+12>
0x212 [AF IF]
0x23 85
0x2b
0x2b
0x2b
0x0
0x0

NC STATE UNIVERSITY

A more complicated than needed Hello World

{} more_complicated_hw.s X »

{F more_complicated_hw.s
.global main
.section .text

main:
push $1
pop %rax # RAX 1 means, w to use the write syscall
push $1 # We wi 5 €) his, means we are writing to FD=1 (stdout)
push $10 # RDX needs to
pop %rdx # Pop [
pop %rdi # Pop fr
mov $hello, %rsi - / me add of hello into RSI

syscall # Exec

We'll talk about this in a bit
mov $60, %rax

mov $42, %rdi

syscall

.section .data
hello:
.string "Hello world!\n"

NC STATE UNIVERSITY

{F more_complicated_hw.s X >

{F more_complicated_hw.s
.global main
.section .text

main:
push $1
pop %rax # RAX , we want to use the e sysc
push $1 # Wwe L C is, means we are g to FD=1 (stdout)
push $10 # RDX needs to be set to the number of
pop %rdx # Pop the last thing off the stack into RDX (10)
pop %rdi # Pop f stack RDI (1)
mov $hello, %rsi # Move memory address of hello into RSI
syscall # Execute the sysca

We'll talk about this in a bit
mov $60, %rax

mov $42, %rdi

syscall

.section .data
hello:
.string "Hello world!\n"

PROBLEMS TERMINAL OUTPUT DEBUG CONSOLE PORTS

L— #icc -m64 -no-pie more_complicated_hw.s -o hello; ./hello
Hello worl—[x]-[root@925e75d859281-[/pwd]
—

(©}

() .podman-wrapped + v ([J W -+ | {3 X

Ln 14, Col 36 Spaces: 4 UTF-8

LF

{} x86 and x86_64 Assembly

@ Prettier

0
Q

NC STATE UNIVERSITY

Let’s step through it

- ASM Visualizer

- How you know how to set the
registers? Use a syscall table

x86_64 (64-bit)

Compiled from Linux 4.14.0 headers.

NR
0
1

59

60
61
62
63

64

syscall name

read
write

execve

exit
wait4
kill

uname

semget

references

man/ cs/

man/ cs/

man/ cs/

man/ cs/

man/ cs/

man/ cs/

man/ cs/

man/ cs/

%rax
0x00
0x01

0x3b

0x3c
0x3d
0x3e
0x3f

0x40

arg0 (%rdi)
unsigned int fd
unsigned int fd

const char
*filename

int error_code
pid_t pid
pid_t pid

struct
old_utsname *

key_t key

What does this do?
mov $60, %rax

mov $42, %rdi
syscall

arg1 (%rsi)
char *buf
const char *buf

const char *const
*argv

int *stat_addr

int sig

int nsems

arg2 (%rdx) arg3 (%r10) arg4 (%r8) arg5 (%r9)
size_t count
size_t count

const char *const
*envp

int options struct rusage *ru

int semflg

https://asm.diveintosystems.org/fullprog/x86_64/.global%20main%0A.section%20%20%20%20%20%20.text%20%0A%0Amain%3A%0A%20%20%20%20push%20%241%20%0A%20%20%20%20pop%20%25rax%20%20%20%23%20RAX%20%3D%201%20means%2C%20we%20want%20to%20use%20the%20write%20syscall%20%0A%20%20%20%20push%20%241%20%23%20We%20will%20set%20RDI%20to%20this%2C%20means%20we%20are%20writing%20to%20FD%3D1%20(stdout)%0A%20%20%20%20push%20%2410%20%23%20RDX%20needs%20to%20be%20set%20to%20the%20number%20of%20%0A%20%20%20%20pop%20%25rdx%20%23%20Pop%20the%20last%20thing%20off%20the%20stack%20into%20RDX%20(10)%0A%20%20%20%20pop%20%25rdi%20%23%20Pop%20from%20the%20stack%20into%20RDI%20(1)%0A%20%20%20%20mov%20%24hello%2C%20%25rsi%20%23%20Move%20the%20memory%20address%20of%20hello%20into%20RSI%20%0A%20%20%20%20syscall%20%23%20Execute%20the%20syscall%0A%0A%20%20%20%20%23%20We'll%20talk%20about%20this%20in%20a%20bit%0A%20%20%20%20mov%20%2460%2C%20%25rax%20%0A%20%20%20%20mov%20%2442%2C%20%25rdi%20%0A%20%20%20%20syscall%20%0A%0A.section%20.data%0Ahello%3A%0A%20%20%20%20.string%20%22Hello%20world!%5Cn%22%0A
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

NC STATE UNIVERSITY

Let's put this all together!

The Registers

#include <stdio.h>
int main() o
C Code
printf("hello, world\n");
return 0;
}
main proc near
R ol i The Stack Frame
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 16h
mov eax, offset aHelloWorld ; “"hello, world\n"
mov [esp+16h+var_10], eax
call _printf
mov eax, 0
leave
retn
main endp

EBP + 0

EBP + 4

Source: MalwareUnicorn’s Blog

https://malwareunicorn.org/workshops/re101.html#4

NC STATE UNIVERSITY

Tools to Become Familiar With

godbolt.org - You can use this site to browser the machine code for any

program
simple.c Z X O x86-64 gce 11.4 (Editor #1) 2 X
A~ BSave/load + Addnew..> WV Vim CJe v || x86-64 gcc 11.4 v 2 @
; k;nc;ude <stdio.h> A @~ ¥~ B F +~ /-~
3 int main() { 1 main: :
4 // Create an integer with the initial value of 42 f pushq %rbp ;
5 int num = 42; 3 movq #rsp, %rbp
,q 4 mov1 $42, -4(%rbp)
7 // Add 31 to the integer > addl $31, -4(%rbp)
8 num += 21; 6 movl $0, %eax
9 7 popq %rbp
10 return @; 8 e
11 §

12

https://godbolt.org/

NC STATE UNIVERSITY

Tools to Become Familiar With

objdump -zd <binary> - Linux tool for producing the same results locally

00000010 <maind>:

1000:
1004 :
1005:
1008:

100 :
1913:
1918:
1919:

3 ef 1le
55
48 89 e5
c7 45 fc
83 45 fc
b8 606 60
5d
c3

2a 00 00 00
1f
00 00

endbré64

push 7%rbp

mov %rsp,%rbp

movl $O©x2a,-0x4(%rbp)
addl $oexif,-ex4(%rbp)
mov $0x0 , %eax

pop %rbp

ret

NC STATE UNIVERSITY

Wait... where is the hello world?

- We are missing an important part
for that, syscalls!

Setup the registers,
depending on what you
want to do

What does this do?
mov $60, %rax

mov $42, %rdi
syscall

NC STATE UNIVERSITY

Wait... where is the hello world?

We are missing an important part
for that, syscalls!

Say the
magic word!

What does this do?
mov $60, %rax

mov $42, %rdi
syscall

NC STATE UNIVERSITY

Wait... where is the hello world?

- We are missing an important part # What does this do?
for that, syscalls! mov $60, %rax

- No need to memorize, just look at a mov $42, %rdi
lookup table

syscall

Syscall ID

old_utsname *

64 semget man/ cs/

x86_64 (64-bit)
Compiled from Linux 4.14.0 headers.
— = =1
NR syscall name references | %rax | argo (%rdi) arg1 (%rsi) arg2 (%rdx) arg3 (%r10) arg4 (%r8) arg5 (%r9)
|
0 read man/ cs/ I 0x00 : unsigned int fd char *buf size_t count
1 write man/cs/ | 0x01 I unsigned int fd const char *buf size_t count
59 execve man/cs/ | 0x3b | const char const char *const const char *const
I | *filename *argv *envp
|
60 exit man/ cs/ I 0x3c : int error_code
61 wait4 man/cs/ | 0x3d | pid_t pid int *stat_addr int options struct rusage *ru
62 kill man/cs/ | ox3ze | pid_t pid int sig
|
63 uname man/ cs/ I 0x3f struct
|
|

0x40 | key_t key int nsems int semflg

o - -

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

NC STATE UNIVERSITY

Next week: Hello world!

.section .text
.global _start

“start:
movq $0x0a6f6c6c6548, %rax
pushqg %rax

movq $1, %rax
movqg $1, %rdi
movq %rsp, %rsi
movq $6, %rdx
syscall

movq $60, %rax

xorq %rdi, %rdi
syscall

x86_64 (64-bit)

Compiled from Linux 4.14.0 headers.

NR syscall name references %rax arg0 (%rdi) arg1 (%rsi) arg2 (%rdx) arg3 (%r10) arg4 (%r8) arg5 (%r9)

0 read man/ cs/ 0x00 unsigned int fd char *buf size_t count - - -

1 write man/ cs/ 0x01 unsigned int fd const char *buf size_t count - - -

NC STATE UNIVERSITY

In-class practice

{} more_complicated_hw.s X »

{F more_complicated_hw.s
.global main
.section .text

main:
push $1
pop %rax # RAX 1 means want to use the write
push $1 # We wi) his an are writing to FD=1 (stdout)
push $10 # RDX needs
pop %rdx # Pop the
pop %rdi # Pop from t
mov $hello, %rsi #

syscall # Execute

We'll talk about this
mov $60, %rax

mov $42, %rdi

syscall

.section .data
hello:
.string "Hello world!\n"

NC STATE UNIVERSITY

How Inaccurate are Nintendo's Official Emulators?

[0 # main ~ . acyCoin | AccuracyCoin.asm (£ Q Go to file

@’ 100thCoin Fixed DMA + $2002 Read yet again. &3 bce0alb - last week

‘ ests passed:

; This ROM is a collection of accuracy tests on an NROM cartridge.

; NOTE: While most of these tests are universal to all revisions of the NES board, CPU, and PPU, there are a handf
; To be more specific, these tests were designed for an RP2A@3G APU/CPU, and an RP2(C02G PPU.

; Additionally, if you run this ROM on your console with a flash cart, you might fail some tests. Notably, the ope

If you are looking for a specific test, consider CRTL + F searching for "TestPages:", as that's where the list ¢
; The format for the tests as they are stored in the ROM is:

; table "Name of test", $FF, Address_To_Store_Test_Results, Address_To_Jump_To_In_Order_To_Run_The_Test
so to easily find the code for a test, you can search for the "Address_To_Jump_To_In_Order_To_Run_The_Test:" rou

; NOTE: The NMI and IRQ vectors both point to RAM. This allows me to create tests that have different NMI/IRQ rout

3333 HEADER AND COMPILER STUFF ;;;;
.inesprg 2 ; 2 banks

-ineschr 1 ;
.inesmap @ ; mapper @ = NROM

.inesmir @ ; background mirroring, horizontal
7333 CONSTANTS ;;;;

flag_c = $1
flag_z = $2
flag_i = $4
flag_d = $8
flag_v = $40
flag_n = $80

http://www.youtube.com/watch?v=oYjYmSniQyM

