NC STATE UNIVERSITY

CSC 405
Writing Assembly
and
Binary Patching

Aleksandr Nahapetyan
anahape@ncsu.edu

(Slides adapted from Dr. Kapravelos)

mailto:anahape@ncsu.edu

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .text
global start

As mentioned in our last lecture, Assembly level programs can be
broken down into three distinct sections

.text contains the actual logic of the program
_start: : e

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .text
global start

One thing this section also includes is an entry point for where the
code actually begins

This is handled with the global _start

_start:

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .bss
; variables Next the block starting symbol (.bss) section stores the

variables that may / may not change during the execution of the
program

section .text
global start ; entry point for program

_start: ; starting point

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .bss
; variables

Finally, the .data section handles constants that will not change

section .data
; constants

section .text
global start ; entry point for program

_start: ; starting point

NC STATE UNIVERSITY

ialan o r (NASM)

Let's say we want to print "Hello World" in Assembly...

Ouir first task is to design a label for the String

section .data
hello:

section .text
global start ; entry point for program

_start: ; starting point

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

We can use define byte (or db) to define the String into memory

The 10 afterwards refers to the decimal notation for a new line

Without a newline character (10) the shell prompt is being displayed immediately after the string

hello: db "Hello World\n"

section .text
global start ; entry point for program

_start: ; starting point

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

We could have also omitted the db command and placed the

characters of the String as raw hexadecimal values

hello: 48 65 6C 3C 6T 2@\57 6F 72 _6C 64_0OA

H e I | o) W o) r | d \n

secti
global start ; entry point for program

_start: ; starting point

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .bss
; variables

section .data
hello: db "Hello World", 10

Now it's time to actually print "Hello World" [chlghdikgels program

_start: ; starting point

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10

rax 64-bit general
Note, you'll often see rax, eax, and ax but they all ¢ register

refer to the same thing, only with a smaller bit space

32-bit general

eax :
register

mov rax, 1 ; Sys_write 16-bit general

ax :
register

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10

(%] sys_read

sys_write

Likewise, we can place other integers into rax to sys_open
execute different system calls

mov rax, 1 ; Sys_write

41 sys_socket

https://filippo.io/linux-syscall-table/

https://filippo.io/linux-syscall-table/

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10

Then, we'll write 1 to the rdi general register

rprogram

This time, 1 in rdi corresponds to the terminal's
standard output

mov rax, 1 ; Sys_write
mov rdi, 1 ; stdout

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

Arch/ABI argl| arg2 arg3 argd arg5 argb arg7 Notes
° alpha ad al a2 a3 ad aS -
SeCtlon b data arc ro ri r2 r3 rd r5 ~
arm/OABI ro ri r2 r3 rd rS ré
hello: db "Hello Wor‘ld" > 1@ arm/EABI re rl n2 r3 rd r5 ré6
arm64 X0 x1 x2 x3 x4 x5 =
blackfin RO R1 R2 R3 R4 RS -
i386 ebx | ecx edx esi edi ebp -
iab4 outd| outl out2 out3 outd outs -
loongarch aé al a2 a3 ad a5 ab
m68k dl d2 d3 da d5 a0 =
. .) . . . |microblaze r5 ré r7 r8 rg rlo -
Since I'm using rax to establish sys_write, rdi mips/032 @ |a1 a2 a3 - - I
can be viewed as the argument for sys_write melmnet |20 |t &= = = @ -

— nios2 r4 r5 ré r7 r8 r9 -
parisc r26 | r25 r24 r23 r22 r21 -
powerpc r3 rd r5 ré r7 r8 ro
powerpcb4 r3 rd r5 ré r7 r8 =

. . riscv a0 al a2 a3 ad a5 -
mOV PaXJ 1 J SyS_Wr‘lte s390 r2 r3 rd r5 ré6 r7 -
o s390x r2 r3 rd r5 ré r7 -
mov r‘dl, 1 ; Stdout superh ra rs ré r7 re rl r2
sparc/32 o0 ol 02 o3 o4 05 -
sparc/64 00 ol 02 o3 o4 o5 -
tile RO | RO1 RO2 RO3 RO4 ROS -
|x86-64 rdi rsi rdx rl@ r8 r9 - I
%52 rdi rsi rdx rlo r3d rS >
xtensa ab a3 ad as a8 a9 -

https://man7.org/linux/man-pages/man2/syscall.2.html

https://man7.org/linux/man-pages/man2/syscall.2.html

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10

section .text
global start ; entry point for program

<

x86-64 rdi rsi rdx rle r8 r9

Next, we specify the message we intend to write to

the terminal by using our label from .data

mov rsi, hello ; message to write

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10

section .text

lobal start ; entry point for program
However, Assembly isn't smart enough to know how

much to print @

| x86-64 rdi rsi rdx rle r8 r9

All we said was where to start printing from
remember, variables are simply memory addresses

OV UAOU

J

mov rsi, hello ; message to write

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10

section .text
global start ; entry point for program

So, we need to specify to the program how many rdi rsi rdx r1@ r8 9
bytes to read from the memory address of hello by

giving sys_write the memory address as a parameter

mov rdx, 12 ; message length

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10
helloLen: equ $-hello

sectio ext

point for program 4:}

Some additional witchcraft could be done to calculate ey
the length of a String by referencing the current
memory location of hello ($) and calculating its

offset (Ilength) in memory (-)

rdi rsi rdx rle r8 r9

, Stdou

lo ; message to write
mov rdx, helloLen; message length

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data
hello: db "Hello World", 10

section .text

global start ; entry point for program
—Star‘t:) Star\ting pOint x86-64 rdi rsi rdx rle r8 ro
mov rax, 1 ; Sys_write

mov rdi, 1 ; stdout We don't need the rest of these registers
mov rsi, hello ; message to write [RiEeVgeETelellle=1elsMIeIVIR (- RIs gy ELIVE]

for syscall also notes where additional
parameters can be found

mov rdx, 12 ; message length

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

section .data

hello: db "Hello World", 10

section .text
global start

_start:
mov rax, 1
mov rdi, 1
mov rsi, hello
mov rdx, 12
syscall

; message length
; execute rax

entry point for program

starting point
sys_write
stdout

; message to write Now that we've loaded everything

needed into memory, we can finally tell
the CPU to call sys_write

NC STATE UNIVERSITY

The Netwide Assembler (NASM)

_start:
mov rax,
mov rdi,
mov rsi,
mov rdx,
syscall

mov rax,
mov rdi,
syscall

hello
12

60

starting point
sys_write

stdout

message to write
message length
execute rax This last bit of instruction is to "correctly"

end our program, because the CPU
expects a sys_exit system call

sys_exit
error code 0 (success)
execute rax

“Compiling” Assembly

Similar to other languages, Assembly needs to be translated into machine code
> nasm -f elf64 hello.asm

We can use NASM to generate our 64-bit binary (In elf format specifically,
we'll talk more about it next lecture)

We need to do one final task: link our binary to an executable file
> 1d -0 hello hello.o

> ./hello
Hello World

https://www.nasm.us/

NC STATE UNIVERSITY

FheNetwide GNU Assembler (GAS)

.data
hello: .string "Hello World\n"

.text
.global _start # entry point for program
_start: # starting point

mov $1, %rax # sys write
mov $1, %rdi # stdout Now in AT&T (Linux format)!
mov $hello, %rsi # message to write
mov $12, %rdx # message length
syscall # execute rax
mov $60, %rax # sys exit
mov $0, %rdi # error code © (success)

syscall # execute rax

NC STATE UNIVERSITY

“Compiling” Assembly

If we're using AT&T syntax then NASM won't work!
However, we can utilize gcc to do the exact same thing

> gcc -c -no-pie hello.s -0 hello.o -c = generate an object, but don't link

> 1d -0 hello hello.o

> ./hello Executable (PIE), which is a security
feature that randomizes the base
Hello World address of the program

-no-pie = disable Position Independent

In-class practice / Tooling check

« Write and assemble (compile) an x86 “Hello, World” binary
— Ensure you have the right Linux setup

« What happens if you pass a 0 for $RSI?

« What happens if you pass a value greater than 127

« How could you bypass the need to have a data section?

NR syscallname references %rax arg0 (%rdi) arg1 (%rsi) arg2 (%rdx) arg3(%r10) argd (%r8) arg5 (%r9)
1 write man/ cs/ 0x01 unsigned int fd const char *buf size_t count
60 exit man/ cs/ 0x3c int error_code

62 kil man/ cs/ 0x3e pid_t pid int sig

NC STATE UNIVERSITY

In-class practice / Tooling check

« Write and assemble (compile) an x86 “Hello, World” binary
— Ensure you have the right Linux setup
« What happens if you pass a 0 for $RSI?
— Nothing. You could figure this out by looking at the source code but
this is way easier!
« What happens if you pass a value greater than 127
« How could you bypass the need to have a data section?

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/read_write.c#L446

NC STATE UNIVERSITY

In-class practice / Tooling check

« Write and assemble (compile) an x86 “Hello, World” binary
— Ensure you have the right Linux setup
« What happens if you pass a 0 for $RSI?
— Nothing. You could figure this out by looking at the source code but
this is way easier!
« What happens if you pass a value greater than 127
— Who knows? Leak secrets, maybe?
« How could you bypass the need to have a data section?

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/read_write.c#L446

NC STATE UNIVERSITY

In-class practice / Tooling check

« Write and assemble (compile) an x86 “Hello, World” binary
— Ensure you have the right Linux setup
« What happens if you pass a 0 for $RSI?
— Nothing. You could figure this out by looking at the source code but
this is way easier!
« What happens if you pass a value greater than 127
— Who knows? Leak secrets, maybe?
« How could you bypass the need to have a data section?
— Put things on the stack!

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/read_write.c#L446

NC STATE UNIVERSITY

In-class practice / Tooling check

« Write and assemble (compile) an x86 “Hello, World” binary
— Ensure you have the right Linux setup
« What happens if you pass a 0 for $RSI?
— Nothing. You could figure this out by looking at the source code but
this is way easier!
« What happens if you pass a value greater than 127
— Who knows? Leak secrets, maybe?
« How could you bypass the need to have a data section?
— Put things on the stack!
— Put things in the code!

https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/read_write.c#L446

NC STATE UNIVERSITY

Changing the World

Whether you used Intel or AT&T syntax, the end result is the same: a binary
object that stores "Hello World" in binary

vuouwuwv vwvuouwv vuouuouwv vwvuwv vuouuwv vwvuouwv vwovuouwv vwvuouwv

4865 6C6C 6F20 576F 726C 640A 0000 0000 Hello World.....
AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAAl

vuvuwval v

80602000
AAAA?A1TA

hello: 48 65 6C 6C 6F 20 57 6F 72 6C 64 OA

NC STATE UNIVERSITY

Changing the World

Whether you used Intel or AT&T syntax, the end result is the same: a binary
object that stores "Hello World" in binary

vwuouuouwv vwvuwv vuouuwv vwvuouwv vwovuouwv vwvuouwv

vuvuwval v vwuwuwv vwvuouwv

0ec02000 4865 6C6C 6F20 576F 726C 640A 0000 0000 Hello World.....
AAAA2A1A AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAAl

hello: 48 65 6C 6C 6F 20 57 6F 72 6C 64 OA

But that also means if we change

this section in memory, we can
~change the world~

Changing the World

Whether you used Intel or AT&T syntax, the end result is the same: a binary
object that stores "Hello World" in binary

govuoulirru UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUUU . . . s s o s s 8 28 28 8 8 8 88

0662000 486F 6C61 284D 756E 646F OAOGA ©00O0G0O 0000 Hola Mundo
ARAAIATA ARAL BARA AAAA ARAA AAAA ARAA AAANA

By directly manipulating the binary, we can replace

"Hello World" with any text that fits into 12 bytes

Changing the World

Whether you used Intel or AT&T syntax, the end result is the same: a binary
object that stores "Hello World" in binary

govuoulirru UUUU UUUU UUUU UUUU UUUU UUUU UUUU UUUU . . . s s o s s 8 28 28 8 8 8 88

0662000 486F 6C61 284D 756E 646F OAOA ©0000 0000 Hola Mundo
ARAAIATA ARAA ARAA ARAA ARAA AAAQD 2o0A AAAA

Note "Hola Mundo" is only 10 characters, so | also

injected another new line character into the code

NC STATE UNIVERSITY

In-class practice

- You can use HexEd.it to patch binaries in your browser!
- Go to https://go.ncsu.edu/csc405-s26-02
- Try out changing “Hello World” with . /hello
- Get . /check to print “Access Granted”

http://hexed.it
https://go.ncsu.edu/csc405-s26-02

NC STATE UNIVERSITY

In-class practice

- You can use HexEd.it to patch binaries in your browser!
- Go to https://go.ncsu.edu/csc405-s26-02
- Try out changing “Hello World” with . /hello
- Get . /check to print “Access Granted”
- Change Access Denied to Access Granted

http://hexed.it
https://go.ncsu.edu/csc405-s26-02

NC STATE UNIVERSITY

In-class practice

- You can use HexEd.it to patch binaries in your browser!
- Go to https://go.ncsu.edu/csc405-s26-02
- Try out changing “Hello World” with . /hello
- Get . /check to print “Access Granted”
- Change Access Denied to Access Granted
- Fix the bug of not having a null-terminated string

http://hexed.it
https://go.ncsu.edu/csc405-s26-02

NC STATE UNIVERSITY

In-class practice

- You can use HexEd.it to patch binaries in your browser!
- Go to https://go.ncsu.edu/csc405-s26-02
- Try out changing “Hello World” with . /hello
- Get . /check to print “Access Granted”
- Change Access Denied to Access Granted
- Fix the bug of not having a null-terminated string
- Bypass the check! 75 27 (jne) — 90 90 (nop nop)

http://hexed.it
https://go.ncsu.edu/csc405-s26-02

NC STATE UNIVERSITY

In-class practice

- You can use HexEd.it to patch binaries in your browser!
- Go to https://go.ncsu.edu/csc405-s26-02
- Try out changing “Hello World” with . /hello
- Get . /check to print “Access Granted”
- Change Access Denied to Access Granted
- Fix the bug of not having a null-terminated string
- Bypass the check! 75 27 (jne) — 90 90 (nop nop)

ralexamithrun ~/A/c/02 asf“W%' (main)> chmod +x check_nop
balex@mithrun ~/A/c/02-assembly (main)> ./check_nop
Enter password: 1sajdfoalsjdof1jasd01fj

Access granted!
balexamithrun ~/A/c/02-assembly (main)> |

http://hexed.it
https://go.ncsu.edu/csc405-s26-02

NC STATE UNIVERSITY

Ensuring Program Integrity

This leads to a new question:
How do | ensure a program has not been tampered with?

NC STATE UNIVERSITY

Ensuring Program Integrity

This leads to a new question:
How do | ensure a program has not been tampered with?

Answer:
We can calculate a checksum of the program's original binary

Ensuring Program Integrity

This leads to a new question:
How do | ensure a program has not been tampered with?

Answer:
We can calculate a checksum of the program's original binary

> sha256sum hello
6688884c7518fb722e560c2b29866c5bbf97228e10d98966cd17fa4470da224c hello
— or —

> md5sum hello
5c0499e5aec8b99a22e4723cbdc5¢c199 hello

We can then save this checksum to

always ensure the program has not
been tampered with

Ensuring Program Integrity

This leads to a new question:
How do | ensure a program has not been tampered with?

Answer:
We can calculate a checksum of the program's original binary

> sha256sum hello
6688884c7518fb722e560c2b29866c5bbf97228e10d98966cd17fa4470da224c hello
— We edit the hello binary —

> sha256sum hello
6c2ff4ed235045a6451188630ac59ca3e826a94e0468b211896d6fe85ac350a6 hello

NC STATE UNIVERSITY

Security Zen - World’s First MIDI Shellcode

https://psi3.ru/bloa/swi01u/

https://psi3.ru/blog/swl01u/
http://www.youtube.com/watch?v=u6sukVMijBg

